
Associate Directorate for Theory, Simulation, and Computation (ADTSC) • LA-UR-08-1690

Lo
s

A
la

m
os

 N
at

io
na

l L
ab

or
at

or
y

�

The Fortran Development Tools (FDT) project is dedicated to delivering
productivity-enhancing and program-correctness tools to the scientific

application developer. The FDT project also provides an important vehicle for
source-to-source transformations, enabling research in the mapping of high-level
language constructs onto advanced computer architectures like Roadrunner. The
goal of this research is to allow the programmer to “write once,” while relying on the
source-to-source compiler to target the disparate variety of computer architectures
that are available.

Because of the increasing complexity of scientific applications and the computing
hardware on which they run, there is a need for tools that support the entire life
cycle of application development. These tools include those that support the
production and maintenance of code, tools that aid in improving the quality of
code, and tools that help developers to both understand and improve application
performance. This document describes work begun on a Fortran open-source
compiler infrastructure created to support tool development; an infrastructure
designed from the beginning for program analysis rather than back-end code
generation.

In addition, we also describe a solution to a special need facing today’s application
developers in the DOE complex. The need is for transformational tools that support
the migration of important DOE applications to run efficiently across a wide range
of new computer architectures, including those with multiple homogeneous (and
especially heterogeneous) processing elements. Tools are needed to reduce the
costs associated with transforming software, and perhaps more importantly, to
guarantee that any changes made won’t affect the output of the software.

Compiler Infrastructure. The FDT project has created an open Fortran 2003
parser (see http://sourceforge.net/projects/fortran-parser/).This parser offers
five advantages: 1) it is based on a language grammar (ANTLR) that allows

project outsiders to relatively easily understand and modify the parser to add
new language constructs, 2) it is open source, 3) it has a clean separation of
the parser from middle-end consumers and Java and C interfaces through which
anyone can implement custom abstract syntax trees (ASTs) and tools, 4) it is fully
Fortran 2003 compliant, and 5) it has been integrated with the Lawrence Livermore
National Laboratory (LLNL) ROSE, C, and C++ infrastructure (see Fig. 1).

Program Transformations. Fortran is an important high-level language because it
is the language of scientific computation and also because it has many data-parallel
constructs. Data parallelism is a high-level abstraction that is, at the same time,
both easier to program and gives the compiler more leeway in retargeting a program
to different computer architectures.

Fortran Development Tools: Providing a
Roadmap for Application Development on
Advanced Computer Architectures

Craig E. Rasmussen, Christopher Rickett, CCS-1; Dan Quinlan, Lawrence Livermore
National Laboratory; Matthew Sottile, Univ. of Oregon

Fig. 1.The architecture of the FDT compiler infrastructure shows the clean
separation of the parser, the ROSE AST (compiler middle-end), and exter-
nal tool consumers.

www.lanl.gov/orgs/adtsc/publications.php �

Advanced Computational Architectures

For example,
A = B + s * C (1)

is a data-parallel assignment statement where A, B, and C are arrays, and s is a
scalar. Note that no explicit iteration over array indices is needed and that the
individual operators, plus, times, and assignment are applied by the compiler to
each individual array element independently. Thus the compiler is able to spread
the computation in (1) across any hardware thread under its control.

While (1) is a very simple example, complete and very concise and elegant
programs can be built up with similar statements and intrinsic functions like the
array constructors (CSHIFT, MERGE, TRANSPOSE, ...), the array location functions
(MAXLOC and MINLOC), and the array reduction functions (ANY, COUNT,
MINVAL, SUM, PRODUCT, ...). In addition, with MPI implementations of these
intrinsic functions, programs written in this data-parallel subset of Fortran are
implicitly parallel; all inter-processor communication is accomplished by these
library routines, not by the application programmer.

Microsoft has demonstrated (via the Accelerator project) that scientific applications
written in a data-parallel language can run on traditional processors and achieve
up to a 17 times speedup on graphical processing unit (GPU) processors, without
recoding. The precise amount of speedup obtained depends on the scientific
application and the algorithms used.

We are evaluating the use of the FDT/ROSE compiler infrastructure to transform
the LANL Pagosa application to run on Roadrunner and other advanced
architectures. The Pagosa code was chosen for the evaluation because it uses the
data-parallel constructs of Fortran discussed above. The FDT source-to-source
compiler was modified to target the IBM Cell Broadband Engine (Cell BE) processor
and tested on a small portion of the Pagosa code. Input to the compiler was Pagosa
Fortran, and output was C language code employing calls to the IBM ALF library
and Cell BE vector intrinsics.

The results of the initial evaluation were promising. The compiler was able to
automatically parallelize and vectorize the chosen section of Pagosa code. Run time
was ten times faster on the Cell BE processor than on a single-core Opteron. While
these initial results were promising, a larger section of Pagosa (employing the MPI
CSHIFT library routines) must be tested before the evaluation is complete.

FDT Project Goals. The goals of the FDT project in the immediate future are to
complete the coupling of our Fortran 2003 parser with the LLNL ROSE compiler

infrastructure and then to develop tools using this infrastructure. In addition, we
intend to continue our research in program transformations for advanced computer
architectures. This research will provide guidance to developers on ways to program
for portability across disparate computer architectures.

For more information contact Craig E. Rasmussen at crasmussen@lanl.gov.

Funding Acknowledgments
- Department of Energy, National Nuclear Security Administration, Advanced
 Simulation and Computing Program

